

Republic of Estonia Environment Agency

European Union Cohesion Fund Investing in your future

Country-wide mapping and assessment of ecosystem condition and services in Estonia

Madli Linder

madli.linder@envir.ee Estonian Environment Agency

LIFE EcosystemServices project conference "Value of Nature – practices and experiences in use of ecosystem services assessment" 15.01.2020, Riga, Latvia

Introduction

• Estonian Nature Conservation Development Plan 2012–2020 obliges performing assessment and mapping of ecosystem condition and services, and integrating it into decision-making and reporting systems by 2020.

ELME* project

- Duration: 2015 to (2020) 2023
- Coordinated by the Estonian Environment Agency
- ELME's main objectives are:
 - mapping and assessment of priority ecosystem services by ecosystems on national scale;
 - developing, testing and implementing **novel methods** (eDNA, camera traps, drones, acoustic sensors, etc.) for monitoring biodiversity;
 - establishing **tools** (incl. the new portal for dissemination of biodiversity data) for integrating socioeconomic and climate change data into assessing and forecasting biodiversity status, and ensuring data availability.

* "Establishment of tools for integrating socioeconomic and climate change data into assessing and forecasting biodiversity status, and ensuring data availability"

Funded by the EU Cohesion Fund and the foundation Environmental Investments Centre

MAIN GOAL of ELME – countrywide mapping and assessment of the ecosystems and their services (2019–2020):

- ✓ focus on 4 ecosystem types: grasslands, wetlands, forests and agro-ecosystems;
- ✓ about 75 priority ecosystem services have been recognized in Estonia, from which the ones to be assessed and mapped have been chosen;
 - **potential supply** is assessed and mapped;
- ✓ ecosystem condition is assessed and mapped;
- links between the condition and services supply are created;
- methodologies are developed and agreed with stakeholders;
- ✓ biophysical (spatially explicit) countrywide as well as pilot-area based assessments are given, maps are generated (resolution 10 × 10 m);
- ✓ the system will be made available for users, incl. decision-makers.

Selection and prioritization of ecosystem services

DEFINING ECOSYSTEM BOUNDARIES

The BASE MAP provides the geographic reference to the ecosystem services data, informing the user on location while simultaneously providing a sense of the actual map scale.

The key element for an ecosystem services base map will be the choice of **geographic units**, determined thematically, that will be later on **linked to the supply of ecosystem services**.

The steps towards a consolidated base map:

- definition of thematic classes,
- overlapping rules,
- filtering/classification rules,
- enhancing/updating,
- aggregation.

The spatial units, the base map classes must be:

- mutually spatially exclusive (no overlaps, no gaps);
- ecologically relevant;
- mappable (data available);
- linkable to other classifications;
- understandable in essence.

Grasslands, 5 classes:

- ✓ Protection status
- ✓ Validity of data
- Nature protection value estimation, preservation of functions, structure
- Maintenance: mowing, grazing
- ✓ Historical habitat continuity
- ✓ Overgrowth rate
- ✓ Restoration status/potential

Wetlands, 5 classes:

- ✓ Protection status
- ✓ Distance to the nearest drainage system
- (Rate of) human impact (cutting, mowing, grazing)
- ✓ Restoration status/potential

Differences in potential supply between these classes

ECO-**SYSTEM**

What is the **good** or **reference** condition – is it what (and then, when?) it was before? Or **naturalness**? Agro-ecosystems, 4 classes:

- ✓ Organic/non-organic farming
- ✓ % of non-arable areas
- Landscape elements >6 m bordering field
- Presence of meadows in good condition in the vicinity (<300 m)
- Environment-friendly management, subsidies
- ✓ Etc.

Forests, 6 classes:

- ✓ Protection status
- ✓ Validity of data
- Nature protection value estimation
- ✓ Historical habitat continuity
- ✓ Cutting information
- ✓ Drainage
- ✓ Stand composition
- ✓ Alien tree species
- ✓ Deadwood

Age

Grasslands, 5 classes:

- ✓ Protection status
- ✓ Validity of data
- Nature protection value estimation, preservation of functions, structure
- Maintenance: mowing, grazing
- ✓ Historical habitat continuity
- ✓ Overgrowth rate
- ✓ Restoration status/potential

Wetlands, 5 classes:

- ✓ Protection status
- Distance to the nearest drainage system
- (Rate of) human impact (cutting, mowing, grazing)
- ✓ Restoration status/potential

Agro-ecosystems, 4 classes:

- ✓ Organic/non-organic farming
- ✓ % of non-arable areas
- ✓ Landscape elements >6 m bordering field
- Presence of meadows in good condition in the vicinity (<300 m)
- Environment-friendly management, subsidies
- ✓ Etc.

Forests, 6 classes:

- ✓ Protection status
- ✓ Validity of data
- Nature protection value estimation
- ✓ Historical habitat continuity
- Cutting information
- ✓ Drainage
- ✓ Stand composition
- ✓ Alien tree species
- ✓ Deadwood

🖌 Age

Grasslands, 5 classes:

- ✓ Protection status
- ✓ Validity of data
- Nature protection value estimation, preservation of functions, structure
- Maintenance: mowing, grazing
- ✓ Historical habitat continuity
- ✓ Overgrowth rate
- ✓ Restoration status/potential

Wetlands, 5 classes:

- ✓ Protection status
- ✓ Distance to the nearest drainage system
- (Rate of) human impact (cutting, mowing, grazing)
- ✓ Restoration status/potential

Agro-ecosystems, 4 classes:

- ✓ Organic/non-organic farming
- ✓ % of non-arable areas
- Landscape elements >6 m bordering field
- Presence of meadows in good condition in the vicinity (<300 m)
- Environment-friendly management, subsidies

✓ Etc.

Forests, 6 classes:

- ✓ Protection status
- ✓ Validity of data
- Nature protection value estimation
- ✓ Historical habitat continuity
- ✓ Cutting information
- ✓ Drainage
- ✓ Stand composition
- ✓ Alien tree species
- ✓ Deadwood

🖌 Age

Determination of semi-natural grasslands overgrowth rate using airborne LiDAR based maps

Grasslands, 5 classes:

- ✓ Protection status
- ✓ Validity of data
- Nature protection value estimation, preservation of functions, structure
- Maintenance: mowing, grazing
- ✓ Historical habitat continuity
- ✓ Overgrowth rate
- ✓ Restoration status/potential

Wetlands, 5 classes:

- ✓ Protection status
- ✓ Distance to the nearest drainage system
- (Rate of) human impact (cutting, mowing, grazing)
- ✓ Restoration status/potential

Agro-ecosystems, 4 classes:

- ✓ Organic/non-organic farming
- ✓ % of non-arable areas
- Landscape elements >6 m bordering field
- Presence of meadows in good condition in the vicinity (<300 m)
- Environment-friendly management, subsidies

✓ Etc.

Forests, 6 classes:

- ✓ Protection status
- ✓ Validity of data
- ✓ Nature protection value estimation
- ✓ Historical habitat continuity
- Cutting information

✓ Drainage

- ✓ Stand composition
- ✓ Alien tree species
- ✓ Deadwood

🖌 Age

Peterson et al, 2011

DEFINING AND MAPPING ECOSYSTEM CONDITION

Identifying forest clearcuts using yearly maps based on the detected changes between Landsat/Sentinel image pairs of two years

Ecosystem services

PROVISIONING (~15)					
CICES v5.1 code	Service	indicators			
1.1.1.1	Cultivated terrestrial plants grown for nutritional purposes	cultivated crops			
1.1.1.2	Materials from plants for direct use or processing	timber			
1.1.1.3	Plant-based energy resources	hay, wood			
1.1.3.1	Animals reared for nutritional purposes	cattle, sheep, etc.			
1.1.3.2	Materials from reared animals for direct use or processing	honey, wool, milk, meat, skins			
1.1.5.1	Wild plants used for nutrition	wild berries, mushrooms			
1.1.5.2	Materials from wild plants for direct use or processing	peat for horticulture, medicinal plants birch sap, chaga, etc.			
1.1.5.3	Wild plants used as a source of energy	fuel wood, peat			
1.1.6.1	Wild animals used for nutritional purposes	game (abundance, meat)			
1.1.6.2	Materials from wild animals for direct use or processing	trophies			
1.2.1.1	Plant materials collected for maintaining or establishing a population	local endangered species and varietie common species			
1.2.2.1	Animal material collected for the purposes of maintaining or establishing a population	local (endangered) strains			
4.2.2.1	Ground (and subsurface) water for drinking	spatial vulnerability and infiltration patterns			
4.3.2.4	Solar energy	long-term yearly potential			
4.3.2.3	Wind energy	energy density			

REGULATION AND MAINTENANCE (~10)					
CICES vs 5.1 code	Service	indicators	Pollination index inputs: ✓ habitat suitability to		
2.1.2.2	Noise attenuation	distance from different noise sources	pollinators, considering		
2.2.1.1	Stabilisation and control of erosion rates	soil loss rates	characteristic plant		
2.2.1.3 / 5.2.1.2	Hydrological cycle and water flow regulation (flood control)	soil properties combined to drainage, etc.	productivity and the		
2.2.1.4 / 5.2.1.3	Wind protection	roughness index, wind energy, etc	period;		
2.2.2.1	Pollination	combined pollination potential index	 ✓ distribution of wild pollinators, ✓ landscape metrics 		
2.2.2.2	Seed dispersal	presence and distribution of wild animals (ar ✓ data on pesticides		
2.2.2.3	Maintaining nursery populations and habitats (including gene pool protection)	distribution of habitats for specific wild pla	nts and animals		
2.2.3.1	Pest control (including invasive species)	resence and distribution of wild animals (arthropods) and their habitats			
2.2.3.2	Disease control	presence and distribution of wild animals (arthropods) and their habitats			
2.2.6.1	Climate regulation	carbon sequestration and storage in above- and below-ground biomass; carbon storage in soil; other greenhouse gases sequestration; micro- and regional climate differences			

N°03

CULTURAL	. (~9)	
CICES vs 5.1 code	Service	indicators
3.1.1.1 / 6.1.2.1	Recreation through active or immersive interactions	hunting; suitability for the sport of foot orienteering, etc.
3.1.1.2 / 6.1.1.1	Recreation through passive or observational interactions	distribution of popular bird watching places; hiking trails
3.1.2.3	Natural and cultural heritage	distribution of selected cultural heritage objects
3.1.2.4	Aesthetic experiences	paintings, photos
3.2.1.1 / 6.2.1.1	Elements with symbolic meaning	spatial distribution of national symbols (wolf, barn swallow, cornflower), etc.
3.2.1.2	Elements with sacred or religious meaning	distribution of sacred natural sites
3.2.1.3	Entertainment, representation	movies, texts
3.2.2.1	Existence value	wilderness areas
3.2.2.2 / 6.2.2.1	Bequest value	endangered species, habitats

Project abbr.	Project long name	Period	Project leader(s) in Estonia	Ecosystems
ELME (EU Cohesion Fund project)	Establishment of tools for integrating socioeconomic and climate change data into assessing and forecasting biodiversity status, and ensuring data availability	2015–2020 (2023)	Estonian Environment Agency	grasslands, forest, wetlands, agro- ecosystems, marine* areas
LIFE Viva Grass	Integrated planning tool to ensure viability of grasslands	2014–2019	Baltic Environmental Forum Estonia, Estonian University of Life Sciences	grasslands
LIFE UrbanStorm	Development of sustainable and climate resilient urban storm water management systems for Nordic municipalities	2018–2023	Viimsi local government	urban
IRENES (Interreg Europe project)	Integrating RENewable energy and Ecosystem Services in environmental and energy policies	2019–2023	Estonian Environment Agency, Estonian University of Life Sciences	all relevant ecosystems
LIFE IP CleanEST	Development of an integrated water management and its modern tools in Estonia – strategic choices for future	2019–2028	Ministry of the Environment, Estonian Environment Agency	freshwater
LIFE Coastal GreenInfra		in evaluation process	Baltic Environmental Forum Estonia	coastal
Accounting pilot (EUROSTAT project)	Compilation of land accounts relevant for ecosystem services account and valuation of grassland ecosystem services	2019	Statistics Estonia	grasslands
Accounting pilot (EUROSTAT Projectext slide	Development of the ecosystem extent and services account	2020–2021	Statistics Estonia	grasslands, forest, wetlands, urban, agro- ecosystems

* Mapping and assessment of marine ES

- The preliminary **methodology** for **marine and inland water ecosystems** was worked out during the project "Development of methods for assessment and mapping of ecosystem services of marine and inland waters" that was conducted in 2014–2015 in Estonia.
- In the framework of Estonian maritime spatial planning process:
 - ✓ the selected marine ES were modelled and mapped (also under ELME project in 2019);
 - ✓ the results are integrated with developed economic impact model of marine areas;
 - ✓ close collaboration with the Ministry of Finance that is responsible of the maritime spatial planning process and developing the economic impact model.

Figure: An example from the ELME marine ecosystem services study. Biomass of the red algae (Furcellaria lumbricalis) drifting form $(g/m^{-2} in wet weight)$.

Cumulative impact of different human pressures on nature assets

≡

Challenges

- Project-based actions, nationwide though
- Harmonizing approaches of NCA and MAES (incl. clear definitions)
- Creating one whole system (from different projects as well as different approaches)
- Technical issues (calculation capacity, etc.)
- Integrating (national and open) data sources and methodologies that are soon there but not yet
- Integration into decision-making
- The latter being related to the (future) accessibility to the data and methodologies, understandability, reliability, repeatability, etc.

Vallecillo et al, 2019.

Special thanks to all whose materials have been used in this presentation: **Ain Kull, Miguel Villoslada**, and **Aveliina Helm** from ELME team, Jonne Kotta (Estonian Marine Institute) and Triin Lepland (Ministry of Finance).

Many thanks also for the hard work for the rest of the ELME team:

- University of Tartu: Liina Remm
- Estonian University of Life Sciences: Eve Veromann, Jürgen Aosaar, Tea Tullus, Siiri Külm, Kalev Sepp
- Tallinn University: Helen Sooväli-Sepping
- Estonian Environment Agency: Allan Sims
- Ministry of the Environment: Merit Otsus, Kristel Järve & team
- Agricultural Research Centre: Tambet Kikas
- Estonian Environmental Board: Kaja Lotman
- Ministry of Finance: Eleri Kautlenbach
- Ministry of Rural Affairs: Kaidi Jakobson

madli.linder@envir.ee